
1 of 4
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Abstract—A nonlinear generalization of the Adaptive Model
Theory, nAMT, is compared with human open-loop tracking
data across the same range of conditions. The resulting
simulations produced effects that mirrored the closed- and
open-loop characteristics of the experimental response
trajectories.  This supports the use of an internal feedback loop
for the inversion of external systems in the nAMT model. Other
control-systems models (both AMT and feedback-error
learning) were unable to reproduce the observed disparity
between closed- and open-loop results without fundamental
modification.  A low internal feedback loop-gain, incorporating
a substantial derivative component, caused this effect.  This low
gain produced acceptable performance due to the relatively low
target bandwidth used in the study, allowing the feedback
control component to function.  Maintenance of the loop-gain at
the lowest possible levels is thought to maximize the internal
stability of the inverse. The simulation work confirmed that the
nAMT model is capable of reproducing human behavior under
a wide range of conditions.
Keywords—Internal models, motor learning, adaptive inverse
control, motor control modelling, tracking task

I. INTRODUCTION

N a recent experimental study [1], human open-loop
tracking data was obtained.  This study revealed

unexpected open-loop response characteristics (obtained by
response cursor blanking) which could not be explained by
existing adaptive control systems human motor control
models such as Feedback Error Learning (FEL) [2-4] or
Adaptive Model (AMT) [5, 6].  A new human motor control
model, developed as a nonlinear generalization of AMT,
exhibits open-loop behaviour differing from these models.
This generalization, called nonlinear AMT (nAMT), was
used to simulate the experimental open-loop tracking data
with the aim of explaining the open-loop spectral
characteristics.

II. PRIMARY FEATURES OF EXPERIMENTAL RESULTS

The tracking study reported in [1] produced response
trajectories exhibiting unusual characteristics, particularly
when the subjects were deprived of response feedback.  The
primary features of the spectral characteristics of the response
trajectories are summarized here and represented graphically
in the results section (see Fig. 3 and Fig. 5).

The open-loop responses for all controlled systems
showed a mean high-pass gain with a cutoff frequency of
approximately 0.3 Hz.  This attenuation of low frequencies
was unexpected. The mean open-loop phase responses
exhibited a phase lead relative to the mean closed-loop phase.
This phase lead effect was much stronger for the nonlinear
static system, which exhibited an open-loop phase lead
peaking at 15–20�.  The dynamic linear system also showed a
mean phase lead from 0–3 Hz which was absent in closed-
loop.  The open-loop results also exhibited a characteristic
low-frequency drop in mean coherence.

The open-loop results do not suggest that the human
subjects are attempting to reach a transfer function of unity,
representing accurate tracking (as has been observed for
closed-loop tracking).  In fact, a quite different relationship
between target and response appears to have emerged.

In contrast, the closed-loop gain was close to unity (as
expected for the human operator after extensive training)
across the target bandwidth.  No attenuation of low
frequencies was evident.  The mean phase responses were
close to zero, except for the dynamic linear system which
exhibited uncompensated phase lag.  The mean closed-loop
coherence was very close to unity for all three systems,
indicating relatively little noise or nonlinearity.
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Fig. 1.  nAMT model structure used in simulations.
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III. METHODOLOGY

A. Unblanked Simulation Structure

The model structure shown in Fig. 1 was used in the
closed-loop training phase of all simulations. The inverse
model is formed by placing the forward model into a high-
gain internal-feedback loop [7-9].  In this model, the
musculoskeletal system is considered to be perfectly
compensated for (since the experimental results were
recorded after substantial zero-order practice) and is therefore
absent from the diagram.  The target signal T(t) and the
external system P were taken directly from the experimental
study.  The remaining model parameters were initialized with
typical parameters for a normal individual [10].

B. Blanked Simulation Structure

Response cursor blanking was simulated by removing
response feedback ( )R t  from the model shown in Fig. 1.  It
is unclear exactly how the nervous system compensates for
the loss of this feedback signal and how best to represent this
compensation in the model.

The most efficient course of action would likely involve
replacing R(t) with the most accurate internal estimate of that
signal. R(t) can be replaced at two places in Fig. 1:
immediately after sensory feedback reaches brain ( )R t �� ,
or immediately prior to reaching the response planner (called
the Optimum Trajectory Generator, or OTG in AMT) at
ˆ( )R t �� .  Investigation revealed that replacing ˆ( )R t ��

with *( )R t ��  produced the results most consistent with
experimental data (see Fig. 2), which is equivalent to
suspending corrective action during open-loop control.

IV. SIMULATION  PROCEDURE

A.  Dynamic Linear External System Simulation

Simulation of the experimental runs began with the
dynamic linear external system used by Group A in the
experiment (3rd order Chebyshev Type I low-pass filter with
cutoff frequency of 3 Hz).  Fifteen runs were simulated in
accordance with the 15 experimental runs performed by the
human subjects.  The model was initialized with several
different adaptation coefficients � so that an appropriate
learning rate could be determined.  � = 0.001 produced a

response with an appropriate closed-loop learning time
constant (compared with experimental results from human
subjects) and these results are therefore reported.

The internal feedback loop gain K, used to invert the
forward model, was defined as

( ) . deK e Pe I e dt D
dt

� � �� ,

where e is the feedback loop error.
The internal feedback loop-gain parameters previously

found to produce good results for a zero-order system were
used for these runs ( 0.5,  1,  0.05P D I� � � ).  Trial runs
with various other feedback-loop gains produced no clear
improvements, and it was very desirable to maintain similar
settings between external systems.

B.  Static Nonlinear External System Simulation

For consistency, exactly the same experimental procedure
and model parameters used for the dynamic linear system
were used in this simulation.  The external system was as
used for Group B in the experiment defined by

3

f( ) = 312  6 -0.4 +0.2 -0.4  + 0.474
180 180
� �

�
� �� � � �
� �� � � �� �� � � �� �

where �  is the steering wheel input angle (in deg).

C. Analysis

A full quasi-linear analysis using the correlation method [11]
was performed, in which the transfer function and coherence
functions were calculated.  The remnant power function was
represented by calculating the coherence function (which
specifies essentially the same information).  Spectral
estimates were calculated at 6 frequencies within the target
bandwidth of 0.6 Hz, providing a frequency resolution of 0.1
Hz.

V. RESULTS

A. Dynamic Linear System

The transfer function and coherence plots for the final run
(run 15) are shown in Fig. 3.  The closed-loop results show a
phase lag and a gain above 0.9 at all frequencies.  The
coherence is also very high in closed-loop.  These superior
closed-loop results are due to the action of the feedback
controller.  The experimental results exhibit less coherence
and more variance than the simulation, which was expected
because noise was not included in the simulation.

The open-loop results show the same characteristic drop
in gain and coherence below 0.3 Hz as was observed in the
experimental results.  The open-loop results also show a
phase lead consistent with the results of several individual
subjects, though this effect is obscured  in the mean.

By the final run, the simulated open-loop trajectory
exhibits characteristics visually similar to the mean response
trajectories of the experimental subjects (Fig. 4).  The
simulated trajectory remains within one standard deviation of
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the mean experimental response.  The simulated trajectory
could well represent a typical human response.
B. Static Nonlinear System

The transfer function and coherence plots for the final run
are shown in Fig. 5.  In closed-loop the simulated gain below
0.5 Hz was higher than observed experimentally.  The phase
response was very close to the experimental mean, and the
simulated coherence exhibited a characteristic drop above 0.4
Hz as seen experimentally.

The open-loop results show the same drop in gain and
coherence below 0.3 Hz that was characteristic of the mean
experimental results.  The gain is lower than the experimental
mean across the target bandwidth but remains within one
standard deviation of the mean except at very low
frequencies..  The simulated drop in coherence is stronger
than that observed in the mean human data, with a
particularly clear disparity at very low frequency (0 Hz in
Fig. 5).  The simulated open-loop results show a strong phase
lead for frequencies in the lower half of the target bandwidth.
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Fig. 3. Simulated a) transfer function and b) coherence for  dynamic linear
external system after 15 runs. Bars indicate standard deviation.  Mean

experimental results (final run) shown with solid lines.  Bars indicate sd.
Simulated results indicated with circles.
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Fig. 4.  Simulated open-loop response after 15 runs (dynamic linear system).
Dashed lines indicate experimental sd.
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Fig. 5.  Simulated a) transfer function and b) coherence for  static nonlinear
external system after 15 runs. Bars indicate standard deviation.  Mean

experimental results (final run) shown with solid lines.  Bars indicate sd.
Simulated results indicated with circles.
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The experimental mean exhibits an approximately linear
phase lead to reach 20� at 0.6 Hz.  In contrast, in  the
simulated phase response, a phase lead at low frequencies
reverses at higher frequencies, resulting in a slight phase lag
from 0.5–0.6 Hz.

Fig. 6 shows the simulated open-loop response trajectory
for run 15.  The response shows very similar characteristics
to the unusual response trajectories observed in the
experiment.  The simulated trajectory again remains within
one standard deviation of the mean experimental response

VI. DISCUSSION

The nAMT computational model succeeded in generating
responses which reproduced many of the principle
characteristics of the response trajectories obtained during the
experimental study.  Importantly, these results were obtained
using a single set of parameters across the wide range of
conditions studied in the experiment (i.e., both closed- and
open-loop control and several different external systems).  As
hoped, the nAMT model was able to suggest a possible cause
for the unusual open-loop trajectories.

It proved possible to generate a high-pass gain with a
phase lead in the absence of response feedback while
retaining acceptably accurate performance in closed-loop (see
Fig. 3 and Fig. 5).  The ability of the model to achieve these
results arose from the inversion method employed in nAMT,
the internal feedback loop, which argues in favor of the
existence of similar circuitry in the brain [9].  The internal
loop-gain found to optimally reproduce the experimental
results was found to be surprisingly low (P = 0.5, D = 1,  I =
0.05), suggesting a dominant role for feedback control at this
target bandwidth (0.6 Hz).  It is notable that both FEL and
AMT are incapable of reproducing this disparity between
closed- and open-loop results without modification to their
structures.

It is usually suggested that during learning the inverse
model becomes increasingly accurate until final convergence
is achieved.  In a combined adaptive control structure the
open-loop response trajectory would consequently become
increasingly similar to the target.  There is no obvious reason
why only the high frequencies should be learned accurately,
as appears to be the case in the experimental results.  This is
particularly true for a target signal with an approximately flat
frequency response like that used in this study.

In simulation, both AMT and FEL behave as predicted:
the inverse model becomes increasingly accurate,
particularly at low frequencies.  Indeed, to prevent an
accurate inverse model forming at low frequencies an
artificial filter needs to be added to deliberately disrupt the
model.  While such low frequency disruption can be
compensated for by the closed-loop controller, and hence
would not affect normal performance, it is difficult to suggest
why the brain would disrupt the inverse in this manner.

In nAMT, using a low internal feedback loop-gain
maximizes the stability of the loop but also essentially filters
the motor response.  This prevents the inverse from becoming
accurate at all frequencies.  This inversion method trades

inverse model accuracy for stability.  Even when the forward
model is entirely accurate it may be necessary to keep the
loop-gain low to maintain inverse loop stability.  Hence,
unlike other combined motor models, the nAMT structure
could potentially finish learning with a completely accurate
forward model but, due to a low loop-gain, retain an
inaccurate inverse indefinitely.

The experimentally observed behavior arose from the
nAMT structure with no major additions or alterations.  This
is supportive of the claim that an internal feedback loop is
used for the inversion of external systems in the human brain
[9].  Paradoxically, the standard AMT model, FEL and, to
our knowledge, all other control-systems-type motor control
models are incapable of reproducing these results due to the
accuracy of the inversion techniques they employ.
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